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ON SEARCHING FOR SOLUTIONS OF 
THE DIOPHANTINE EQUATION x3 + y3 + z3 = n 

KENJI KOYAMA, YUKIO TSURUOKA, AND HIROSHI SEKIGAWA 

ABSTRACT. We propose a new search algorithm to solve the equation x3 +y3 + 
z3 = n for a fixed value of n > 0. By parametrizing lxl =min(lxl, IyI, IzI), this 
algorithm obtains Iyj and IzI (if they exist) by solving a quadratic equation 
derived from divisors of IX13 ? n. By using several efficient number-theoretic 
sieves, the new algorithm is much faster on average than previous straightfor- 
ward algorithms. We performed a computer search for 51 values of n below 
1000 (except n _ ?4 (mod 9)) for which no solution has previously been found. 
We found eight new integer solutions for n = 75, 435, 444, 501, 600, 618, 912, 
and 969 in the range of IxI < 2 107. 

1. INTRODUCTION 

Consider the Diophantine equation 

(1) x3+y3 +z3 =n, 

where n is a fixed positive integer and x, y and z can be any integers with minus 
signs allowed [4, 12, 15]. Note that there are no solutions of equation (1) when 
n-?4 (mod 9) because a30, 01 (mod 9) for any integer a. There is no known 
general criterion for excluding any other values of n, although there are still many 
values of n for which no solution has been found. 

In finding all solutions for a range of values of n with max(lxl, lyl, lzl) < U, a 
straightforward two-dimensional algorithm [3, 8, 11] takes O(U2) steps. In [8], 
a computer search based on this algorithm in the range of max(lxl, lyl, lzl) < 
2097151 (= 221 - 1), 0 < n < 1000, was discussed. This range included the 
ones chosen in [3] and [11]. All 5418 solutions found were deposited into the UMT 
file of the American Mathematical Society. In particular, the search found so- 
lutions for 17 values of n for which no solutions had been found before: n = 

39, 143, 180, 231, 312, 321, 367, 439, 462, 516, 542, 556, 660, 663, 754, 777, and 
870. Recently, Koyama [9] extended a computer search to the range of 
max(lxl, lyl, lzl) < 3414387, 0 < n < 1000, on a CRAY-2 computer. He found 
other solutions for n = 439 as (-869 418, -2 281 057, 2 322 404) and for n = 462 
as (1 612 555, 2 598 019, -2 790 488) in differing ranges of [8] and [9]. Conn and 
Vaserstein [2] presented a search method by parametrizing another variable re- 
lated to (x, y, z) for a fixed value of n. They carried out a computer search in 
the range of 0 < n < 100 on a Sun 4 and a Next workstation. Although they 
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missed some solutions, they found solutions for n = 39 and 84. In particular, a 
solution for n = 84 was found as (-8241191, -41531726, 41639611) beyond 
the range of [9]. Heath-Brown, Lioen and te Riele [6] presented a new algorithm 
based on the class number of Q(3 n) for solving equation (1) with a fixed value 
of n. Their algorithm takes O(co U log U) steps to find all solutions in the range 
of max(lxl, lyI, lzl) < U, where the constant co depends on n. They did nu- 
merical experiments for n = 2, 3, 20, 30, 39, and 42 over an extended range 
on a CYBER 205 vector computer [6, 13]. According to recent private commu- 
nications among Vaserstein, te Riele and Koyama, it appears that the solution 
(117367, 134476, -159380) for n = 39 was independently found by these three 
groups in 1991. In early 1995, Jagy [7] presented a search method by parametriz- 
ing r = x + y + z for a fixed value of n. He found a solution for n = 478 as 
(-1 368 722, -13 434 503, 13 439 237). With these recent results included, there are 
51 values of n below 1000 (and t ?4 mod 9) for which no solution has been found: 

n= 30, 33, 42, 52, 74, 75, 110, 114, 156, 165, 
195, 290, 318, 366, 390, 420, 435, 444, 452, 501, 

(2) 530, 534, 564, 579, 588, 600, 606, 609, 618, 627, 
(2) 633, 732, 735, 758, 767, 786, 789, 795, 830, 834, 

861, 894, 903, 906, 912, 921, 933, 948, 964, 969, 
975. 

In this paper, in order to find all solutions in the range of min(lxl, lyl, lzl) < L 
for a fixed value of n in the above list, we propose a new search algorithm that takes 
O(c L2) steps. The constant c depends on n, and the computational complexity is 
much smaller than that of previous straightforward algorithms [3, 8, 11]. This 
improved efficiency is achieved by several number-theoretic sieves in the algorithm. 
We show the results of a computer search that used this algorithm. 

2. OUTLINE OF NEW SEARCH ALGORITHM 

Without loss of generality, we may take 

IxI < IY <y Iz. 

The solutions are generally classified into the following three cases: 
Case 0: x > 0, y > 0 z > 0, 
Case 1: x > 0, y > 0, z < 0, 
Case 2: x < 0, y <0, z > 0. 

In case 0, the constraint 0 < x3 + y3 + Z3 < 1000 implies z < 9. Thus, it is easy to 
find all solutions for case 0, even if a three-dimensional exhaustive search is done, 
that is to say, x, y, z vary independently. In order to find all solutions for case 1 
and case 2 over a range of values of n, a two-dimensional exhaustive search with 
parameters y and z was done in [3, 8, 9, 11]. In order to find all solutions for case 1 
and case 2 with a fixed value of n, we propose a one-dimensional exhaustive search 
with one parameter x. In case 1, we put X = x, Y = y, Z =-z, and A = X3-n, 
where X is assumed so that X3 > n. In case 2, we put X -x, Y =-y, Z = z, 
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and A = X3 + n. Summarizing case 1 and case 2, we have 

(3) Z3_ 3 = A 

where Z > Y > 0 and A > 0. Equation (3) can be rewritten as a product of two 
divisors 

(4) (Z _ y)(Z2 + ZY + y2) A. 

Let C = Z - Y and D = Z2 + Zy + y2. For given values of X and n, we compute 
A. By factorizing A, we obtain candidates for the pair of divisors C and D such 
that A = CD. By substituting Z = C + Y into D = Z2 + Zy + y2, we get 

(5) y +CY+ D = 0. 
3 

Note that (C2 - D)/3 is an integer. The value of Y (> 0) is obtained as one of the 
roots of equation (5) as 

(6) Y= 2 , where Q= 
_ 

From Z = C + Y, we have 

(7) z = C 

Note that Q is a positive integer because C2 = Z2 - 2ZY + y2 < Z2 + Zy + y2 = D 
and 4D 02 (mod 3). If Q is a square, then Y and Z, which are represented by 
equations (6) and (7), become integers because Q C (mod 2). 

3. PROPERTIES OF SIEVES AND THEIR EFFECT 

To execute the above procedure, several sieves based on the following properties 
can be applied. 

3.1. Congruence restriction between n and x. If a = 1,2, -3, then a3 = 1 

(mod 7). If a -1,-2, 3, then a3 _-1 (mod 7). Since a3 0, 1 (mod 7) for 
any integer a, we have Z3 -Y3 _l 0 + 2 (mod 7). Recall that 

Z3-Y3 = X3+in |fX3-n for case 1, ri 
-x +n for case 2. 

Therefore, if n - +3 (mod 7), then x3 3 0 (mod 7). If n- 2,3 (mod 7), then 
X -1 (mod 7). If n --2,-3 (mod 7), then x3 t 1 (mod 7). Thus, for given n, 
the value of x is restricted as follows: 

Property 1. 
* If n 2 (mod7), then x - 0, 1, 2, -3 (mod7). 
* If n -2 (mod 7), then x _ 0, -1, -2, 3 (mod 7). 
* If n 3 (mod 7), then x - 1, 2, -3 (mod 7). 
* If n _-3 (mod 7), then x _ -1, -2, 3 (mod 7). 

If n- +2 (mod 7), then the passing ratio for X in this sieve is 4/7. If n- 3 
(mod 7), then the passing ratio for X in this sieve is 3/7. Among the 51 values of 
n in the list (2), there are 21 values of n satisfying n-- 2 (mod 7) and 20 values 
of n satisfying n-= 3 (mod 7). 

Since a3 -O ?1 (mod 9) for any integer a, we have Z3 - Y3-,0 +1+2 (mod 
9). It is well known that if n + ?4 (mod 9), there is no solution. Note that for 
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b =, I1, congruence x3 _ b (mod 9) is equivalent to congruence x -b (mod 3). 
For given n such that n _ ?2, ?3 (mod 9), the value of x is similarly restricted as 
follows: 

Property 2. 
* If n_ 2 (mod 9), then x 0 O, 1 (mod 3). 
* If n -2 (mod 9), then x 0 O, -1 (mod 3). 
* If n_ 3 (mod9), then x _1 (mod3). 
* If n -3 (mod 9), then x --1 (mod 3). 

If n ? ?2 (mod 9), then the passing ratio for X in this sieve is 2/3. If n _ ?3 
(mod 9), then the passing ratio for X in this sieve is 1/3. Among the 51 values 
of n in the list (2), there are eight values of n satisfying n ? ?2 (mod 9) and 41 
values of n satisfying n _ ?3 (mod 9). We have proven that no other values of 
modulus for n except 7 and 9 have the sieve effect of excluding some values of x for 
a solution [14]. 

3.2. Factor restriction of A based on cubic residuacity. A prime p is a factor 
of A (= X3 ? n) if and only if X3 _ Tn (mod p). Thus, for given n, the factors of 
A are restricted as follows. 

Property 3. Let p be a prime. If n is a cubic nonresidue modulo p, then A (= 
X3 ? n) does not have the factor p. When p _ 2 (mod 3), all values of n are cubic 
residues modulo p. When p 1 (mod 3), n is a cubic residue modulo p if and only 
if n P3 =1, 0 (modp). 

In advance, for fixed n, we can easily pick primes p satisfying cubic residuacity 
(i.e., there is a solution X for X3 _ ?n (mod p)) from all primes below a certain 
limit. Let Wm be the set of primes satisfying p -2 (mod 3) and p < m. Let Vm(n) 
be the set of primes satisfying p =1 (mod 3), n 1, 0 (mod p), and p < m. Let 
Pm (n) be the set of the union of Wm and Vm (n) that includes the prime 3. Note 
that IPm(n)I = IWm + IVm(n)l + 1, where I I means the cardinality of a set. For 
example, there are 348 513 primes below 5000000, giving us IW5ooooooI = 174 322. 
Table 1 shows IVm (n) I and IPm (n) I for several values of n and m = 5 000 000. From 
Table 1, we can observe that IPm (n) is about 66.7% of the number of all primes 
(=348 513). Using these prechosen primes, factoring based on trial and division can 
be more efficiently carried out. 

TABLE 1. Number of primes satisfying cubic residuacity below 
m (= 5 000 000) 

n 30 33 42 52 74 75 

IVm(n)j 58 145 58 079 57 912 58 097 58 124 58 064 
[Pm(n) 232468 232402 232235 232420 232447 232387 

3.3. Factor restriction between A and C. We obtain the following theorem 
about the relationship of factors of A and C. Hereafter, we denote pe IN if pe N 
and pe+l t N for integer N and prime p. 

Theorem 1. Let p be a prime with p -2 (mod3). If pe IA (e > 1), and pfI C 
(f > 0), then e = f + 2g and f > g, where g is a nonnegative integer. 
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Proof. Let w -1+2. A prime satisfying p = 2 (mod 3) is a prime element in 
Z[w]. Note that A = Z3 Y3 = (Z-y)(Z_ wy)(Z _ w2y), where C = Z-Y and 
D = (Z - wY)(Z - w2Y). Assume that Z - wY = pa DI and Z _ w2y = pb D2, 
where p{ DI, p { D2, a > 0 and b> 0. For any integers k, Y and Z, we have 

k (Z-wY) <= - [kIZ and kIY] ~ kl (Z _ w2y). 

Putting k = pa and k = pb into the above relation, we have a = b, which is denoted 
by g. Thus, p2g ID, which implies e = f + 2g. Furthermore, p9 (Z - Y), that is, 
p9gC. Thus, f > g. Dz 

As a result of this theorem, divisor C is restricted as: 

Property 4. Let p be a prime with p- 2 (mod3). Assume that pej A, where 
e > 1. Then ph I C and pf I IC, where 

(8) h _f| F31 + (1- (rFe mod 2)) if e is odd, 
l [] + ([i] mod 2) if e is even, 

h<f <e andf -h is even. 

For example, if e - 1, 3, then pl C. If e = 5,7,9, then p3 IC. If e = 2,4,6, then 
p2 C. Ife - 8, 10, 12, then p4 C. Ife = 3, then either f = I or f - 3. Property 4 is 
effective in determining the candidates for divisor C from the combination of prime 
factors of A. Note that, even if a prime factor p of A with p -1 (mod 3) is found, 
we cannot determine whether it is a factor of C or not. For the prime factor 3, we 
obtain the following theorem. 

Theorem 2. Assume that 3e A, 3f C and 39 1D. Then e= f + g and f> [ 9 
Moreover, if e > 0, then e > 2, f > 1 and g > 1. 

Proof. Let w -1+ V/3 and ir = 1-w. For Z,Y E Z, if qraH(Z - wY) and 2 
7rbll(Z _ w2Y), then a b, which is denoted by g. Note that for N E Z, if 1rkl N, 
then k is even. Since 3 = -w272, we have 3klIN -=> ir2k IN for N E Z. If qr21 y, 
then g =min(2f, 2f + 1) because Z - wY = C + 7rY and 1r2f I C. Thus, we have 
2f?> g and f > Fg1. Since C2=-D (mod 3), we have 31C = 31D. DU 

Note that if 31A, then 32 A, 3 1C and 3 1D. By means of Theorem 2, divisor C is 
restricted as: 

Property 5. If 3e 1 A and e > 1, then 3h I C, where h F 1. 

For example, if e = 2,3, then h = 1. If e = 4, 5, 6, then h = 2. Note that from 
Property 2, if n - 2, +3 (mod 9), then 3 t A. Among the 51 values of n in the 
list (2), there are two values of n satisfying n +1 (mod 9) for which A may have 
a factor of 3. 

3.4. Size restriction of C. Since c2 < D A/C, we have C < A1/3. When 
X > n such that n < 1000, X > 100000, we have A = X3 + n X3 and a 
weak upper bound of C is obtained as C < X. Furthermore, since Z < 21/3Y and 
Z > 21/3X if X > n, a stricter upper bound of C is evaluated in a term of X as: 

CX3 <X3 X_-_0_2599X 

Th y2 + yZ + Z2 < (I + 2-1/3 + 2-2/3) 1 + 21/3 + 22/3 

This inequality implies the following property. 
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Property 6. C < 0.26X. 

The combination of Properties 4, 5 and 6 is effective in finding prime factors of 
A, more exactly, prime factors of C. At the beginning of trial division factoring, 
an upper bound of searched primes is put as B = L0.26Xi. After prime factors plk 

of A satisfying Pk = 3 or Pk -2 (mod 3) are found, the upper bound of primes for 

trial division factoring is dynamically reduced to B 0?j.26X The final upper 

bound B depends on the distribution of prime factors of pseudo-random values of 
A. 

3.5. Congruence restriction between A and C. If C $ 0 (mod 3), then D 1 
(mod 3). If C # 0 (mod 2), then D 1 (mod 2). Thus, the following congruences 
of A and C for a particular modulus hold. 

Property 7. C _ A (mod 6), that is, C _ A (mod 2) and C _ A (mod 3). 

The relationship C -A (mod 6) is effective in checking the appropriateness 
of pairs of C and D. Furthermore, by combining Properties 4, 5, 6 and 7, a 
kernel divisor of C, which is denoted by H, can be computed and has a congruence 
relationship with A as shown in the following theorem. 

Theorem 3. Let Pi = 3. Let Pk (k > 2) be a prime satisfying Pk 2 (mod 3), 
Pk < Pk+, and Pk < L0.26Xj . Assume that p, I IA, ek > 0 (k = 1, 2,3, ... ). Let H 
be defined as 

H = rl Phk 

k=1 

where f is the maximum integer satisfying H < L0.26Xj, and 
f 

Fel if 3eiJA, 
hk [ek + (1- (Fek mod 2)) if pekII A k > 2 and ek is odd, 

1 K1] + (FI1 mod 2) if pekII A, k > 2 and ek is even. 
Then, HIC and H _ A (mod 6). 

Proof. It is clear that HIC because of Properties 4 and 5. Since H C (mod 6) 
and C A (mod 6), we have H -A (mod 6). DU 

If Pk t A for all primes Pk E Wi, m = L0.26Xj, then H = 1. In Theorem 3, 
H is generally defined and discussed; however, when 21A, the congruence H- A 
(mod 2) always holds. When 31A, the congruence H A (mod 3) always holds. 
When the factor 3 is excluded from A and H, the following property can be used 
as a sieve before checking each candidate of C. 

Property 8. LetH = 3hH', 3t H', A = 3eA/ and 3t A'. Then H' i- A' (mod3). 

In this sieve, two cases such that {H' 1 (mod 3) and A' 2 (mod 3)} and 
{H' -2 (mod 3) and A' =1 (mod 3)} are rejected, and two other cases such 
that {H' -A' _1 (mod 3)} and {H' -A' _ 2 (mod 3)} are accepted. From 
an extensive computer experiment, we can observe that the passing ratio for X to 
satisfy H' -A' (mod 3) is about 50% . Note that, even if H = 1, the passing ratio 
for X to satisfy H' _ A' (mod 3) is also about 50% . 

In our search algorithm, the first trial division factoring is carried out for the 
prime 3 and primes E WB, then congruence H' _ A' (mod 3) is checked. If the 
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check is successful, then the second trial division factoring is carried out for primes 
E VB (n), where B is the final upper bound of the first trial division factoring. Next, 
the candidates of C are computed from a combination of these factoring results. 

3.6. Congruence restriction between C and n. The value of C is more re- 
strictive for special values of n. We can extend the result that was analyzed for 
n = 30 in [13]. If n 3 (mod 9), then x _ y _ z 1 (mod 3). If a 1 (mod 
3), then a3 -3a+2 (a-1)2(a + 2) -0 (mod 27). Thus, when n 3 (mod 
9), we have n _ x3 + y3 + z3 = (3x - 2) + (3y - 2) + (3z - 2) = 3(x + y + z) - 6 
(mod 27), which implies x + y + z 2 + n (mod 9). On the ohter hand, if 
n - -3 (mod 9), then x _ y _ z --1 (mod 3). If a -1(mod 3), then 
a3-3a-2--(a + 1)2(a-2)=0 (mod 27). Thus, when n _-3 (mod 9), we have 
n- x3 + y3 + Z3 (3x + 2) + (3y + 2) + (3z + 2) -3(x + y + z) + 6 (mod 27), 
which implies x + y + z _-2 + n (mod 9). These congruences imply the following 
property. 

Property 9. If n +3 (mod 9), then 

c- X- k (mod 9) for case 1, 
X + k (mod 9) for case 2, 

where 

k = | 2+ 3- (mod 9) if n-3 (mod9), 
-2 + n (mod 9) if n -3 (mod 9). 

If n- +3 (mod 9), then this sieve modulo 9 can be used in addition to the sieve 
modulo 6. There are 41 values of n satisfying n= ?3 (mod 9) in the list (2). They 
include the case for n = 30, which is the smallest in the list (2) and said in [4, 
Probl. D5] to be the most interesting. 

3.7. Congruence restriction of C based on quadratic residuacity. If an 
integer b is a quadratic nonresidue modulo p for some prime p, then b is not a square. 
This relationship of quadratic residuacity can be applied for choosing an appropriate 
value of C. An application of several primes, say p = 5, 7, seems to be practically 
effective. Recall Q = (4D - C2)/3 is a square if there is a solution for equation 
(1). When p = 5, pairs of (A, C) modulo 5 such that (-2, 1), (-1, 2), (1, -2) 
and (2, -1) imply the quadratic nonresidue condition Q 2 1 (mod 5). 
Thus, the value of C is restricted by the value of A modulo 5 as follows. 

Property 10. 
* If A 1 (mod 5), then C ?1, 2 (mod 5). 
* If A -1 (mod 5), then C ? 1, -2 (mod 5). 
* If A 2 (mod5), then C -1, ?2 (mod5). 
* If A -2 (mod5), then C -1,+2 (mod5). 

The characteristic that A _ 0 (mod 5) implies C -0 (mod 5) is common to 
Property 4. If A # 0 (mod 5), then the passing ratio for C in this sieve is 3/5. 

A similar restriction is obtained for another prime, p 7. Recall A 0 ?3 (mod 
7). When A ?2 (mod 7), the value of Q is always a quadratic residue modulo 
7. Pairs of (A, C) modulo 7 such that (-1, 1), (-1, 2), (1, 3), (-1, -3), (1, -2), 
and (1, -1) imply the quadratic nonresidue condition Q 2 z 1 (mod 7). 
Thus, the value of C is restricted by the value of A modulo 7 as follows. 
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Property 11. 

* If A 1 (mod7), then C _ 1, 2, -3 (mod7). 
* If A -1 (mod 7), then C _ -1, -2, 3 (mod 7). 

The sieve based on Property 11 is effective except for n with n- =3 (mod 7) 
because A ?_ 1 (mod 7) if and only if (n, x3) =- (+2, ?1), (+1,0), and (0, ?1) 
(mod 7). If A- ?1 (mod 7), then the passing ratio for C in this sieve is 3/7. 

4. THE ALGORITHM WITH NUMBER-THEORETIC SIEVES 

By parametrizing the positive integer X in the range of S < X < L, our search 
algorithm utilizing all of the above properties is as follows. 

Input: n, S, L 

Output: A solution (x, y, z) of x3 + y3 + z3 = n with S < min(lxl, IyI, IzI) < L or 
a message "nonexistence" if there is no solution. 

step 1: Let Wm and Vm(n) be the sets of primes satisfying 

Wm {p I{pi =P 2 (mod3), Pi < m}, 

Vm((n) = {pi {Pi- 1 (mod3), n(P-1)/3 mod pi = {0,1}, pi < m}. 
Collect primes pi c Wm and p, E Vm((n), where m = [0.26LJ. 

step 2: Put X = S. 
step 3: Check X by the values of n mod 7 and n mod 9 by using Properties 1 

and 2. 
If X is not appropriate as a solution then go to step 11 endif. 

step 4: Compute A = X3 ? n 
(A is a representative of A1 - X3-n and A2 = X3 + n). 

step 5: Let B = [0.26XJ, H = 1 and F= 1. 
If 3eIIA (e > 1) then put H = 3h, B = LB/3hJ, F =3e-h endif. 

step 6: Find prime factors pi C WB of A by a revised trial division: 
Do while pi < B 

if pietIIA (ei > 1) 
then if p h, < B 

then put H=H .p h, Bz= LB/plhpJ, F F.p>h 
else go to step 11 endif 

endif 
enddo. 

step 7: Let H'= H/3h (h > 0) and A' = A/3e (e > 0). 
If H' z A' (mod 3) then go to step 11 endif. 

step 8: Find prime factors pi c VB(n) of A by a trial division: 
Do while pi < B 

if pie- IA (ei > 1) then put F = F .pie endif 
enddo. 

step 9: By using the information of the factors H and F of A, choose divisor Ci 
as Cj - HFj satisfying Properties 6, 7, 9, 10, and 11, where Fj is the 
jth element among combinations of factors of F. 
Compute another divisor Dj = A/Cj from each Cj. 
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step 10: If Qj = (4Dj - Cj)/3 is a square for the candidate pair (Cj, Dj) 
then compute 

-Cj?+Q _Cj?+Q 
2 ' 2 

Output (x, y, z) transformed from (X, Y, Z) according to either case 1 or 
case 2 endif. 

step 11: Put X =X +1. 
If X > L then output the message "nonexistence" 
else go to step 3 endif. 

Re-marks. 

* Step 1 corresponds to a precomputation phase; steps 2 to 11 correspond to 
the main phase. Step 6 and step 8 are the most time-consuming parts of the 
algorithm. Since the number of primes below 3 is about [13/ log/3j, step 6 
and step 8 require at most 0.667 L0.26X/ log 0.26X] divisions for each value 
of X. Thus, the order of this algorithm is O(cL2), but the constant term c is 
very small on average. 

* If A has no prime factors less than 0.26X, then Ci = 1 and D1 = A. 
* The square root Q is quickly computed in floating-point arithmetic and 

the value is rounded to the nearest integer. By squaring this integer, the 
squareness of Q is checked. 

Numerical Example. When n = 501, we found a new solution for case 2. We 
mention the values of the intermediate variables in the algorithm. Let 19 895 058 < 
X < 19895059. When X = 19895058, the information of {n _ -3 (mod 9) 
and X _ 0 (mod 3)} shows that this value of X is not a solution for both case 
1 and case 2. When X - 19895059, the information of {n _-3 (mod 7) and 
X _ 2 (mod 7)} or {n_ -3 (mod 9) and X _ 1 (mod 3)} shows that this 
value of X is not a solution for case 1. This value of X may be a solution for 
case 2, and it follows that A = X3 + n = 7874730401 134188690880. Note 
that [0.26 x 19895 059 = 5 172 715. We apply trial division factoring of step 
6 with primes Pi satisfying pi _ 2 (mod 3) and pi < 5172715. After knowing 
that A has the factor 26, the upper bound of primes for the trial and division is 
reduced to [O.26X 1293178. Moreover, after knowing that A has the factor 
5, the upper bound is reduced to L%2265 J 258635. After finding that A has 
the factor 169 553, step 6 ends with I22266X53J 1. Thus, we have F = 24 and 
H = H' - 22 5 169 553 = 3 391 060, which holds H' _ A'(= A) _ 1 (mod 3). Since 
the reduced upper bound becomes one, we do not need the trial division factoring 
of step 8 with primes pi satisfying Pi _ 1 (mod 3) and 501(P2-1)/3 _ 0 1 (mod 
Pi). Note that, although A has factors 181 and 6 073 below 5 172 715, they are not 
included into the factors of F. Thus, the candidates for divisor C satisfying the 
exponent restiction and A _ C _ 4 (mod 6) are {H, H 22, H* 24}. Among these 
candidates, only 3 391 060(= H) satisfies C < 0.26X. For C = 3 391 060, we have 
Q = (4D - C2)/3 = 3 092 437 844 334 864, which is a square of 55 609 692. Thus, we 
can compute Y = 26 109 316 and Z = 29 500 376. Finally, we obtain the solution 
for n = 501 as (-19 895 059, -26 109 316, 29 500 376). 
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5. COMPUTER SEARCH AND ITS RESULTS 

By using the search algorithm mentioned in ?4, we performed a computer search 
for solutions of equation (1) for the 51 values of n below 1000 in the list (2). The 
range of the search was determined as follows. The ratio Z/X is maximal when 
Z - Y = 1 and X > n, which imply 

X (Z2 + Zy + y2)1/3 (3Z2)1/3 31/3 3 1.442Z2/3. 

The ratio Z/X is minimal when X 2-1/3Z 0.7937Z. As a result, the range of 
X is represented in terms of Z as 

1.442Z2/3 < X < 0.7937Z. 

In [9], a search for all solutions in the range of max( x , Iy, YI z ) = Z < 3 414 387 
was done. That is to say, a complete search for all solutions in the range of X < 

[31/3 . 34143872/31 = 32702 and a partial search for solutions in the range of 
32702 < X < [2-1/3 . 3414 387J = 2710000; a search for solutions in the range of 
2 710 000 < X was not done. 

Our new search algorithm parametrizes a positive integer X that is in the range 
of S < X < L, where min(lxl, IyI, zI) = X. To keep a continuous and exhaustive 
search going, we put S = 32702. Taking into account our computer's power, we put 
L = 2 107. The CPU-time on a DEC Alpha Server 2100 computer (4 processors, 
190 MHz) was about 4 months. 

We found eight new integer solutions for n = 75, 435, 444, 501, 600, 618, 912, 
and 969 as shown in Table 2. Note that the solution (x', y', z') for n = 600 is 
derived from the solution (x, y, z) for n = 75 because 600 = 75 .23 and (x', y', z') = 
(2x, 2y, 2z). Since our search algorithm is deterministic and exhaustive, we can also 
confirm that there is no solution for 43 values of n below 1000 exempting the above 
eight values of n in the range of Ix < 2. 107. 

Quite recently, a referee informed us of the related work [1, 5, 10]. Bremner [1, 5] 
presented a search method by parametrizing m = y + z and x to find solutions for 
a fixed value of n. It appears that he and we independently found solutions for 
n = 75 (and n = 600). By using Bremner's search method, Lukes [10] found a new 
solution for nf 110 as (109 938 919, 16 540 290 030, -16 540 291 649) and another 
solution for nf 435 as (-981 038 126, -509 795 654 285, 509 795 655 496). These 
solutions were found beyond the range of our search. As a result, there are 42 
values of n below 1000 (exempting n- ?4 (mod 9)) for which no solutions have 
been found. 

TABLE 2. New solutions 

X Y Z n 
4 381 159 435 203 083 -435 203 231 75 

-2 058 260 -5 434 196 5530891 435 
3 460 795 14820289 -14 882 930 444 

-19 895 059 -26 109 316 29500376 501 
8 762 318 870406166 -870406462 600 
5 368 580 15435275 -15 648 793 618 

-14 232 281 -55 648 340 55 956 937 912 
1 319 606 17395148 -17397679 969 



SOLUTIONS OF x3 + y3 + z3 = n 851 

ACKNOWLEDGEMENT 

We wish to thank Kiyoshi Shirayanagi for his valuable comments, which helped 
improve our manuscript. We would also like to thank the referee for his valuable 
comments and bringing the recent work [1, 5, 10] to our attention. 

REFERENCES 

1. A. Bremner, On sums of three cubes, Canadian Math. Soc. Conf. Proc. 15 (1995), 87-91. MR 
96g:11024 

2. B. Conn and L. Vaserstein, On sums of three integral cubes, Contemp. Math. 166 (1994), 
285-294. MR 95g:11128 

3. V. L. Gardiner, R. B. Lazarus and P. R. Stein, Solutions of the Diophantine equation x3+y3- 

z3- d, Math. Comp. 18 (1964), 408-413. MR 31:119 
4. R. K. Guy, Unsolved Problems in Number Theory, First Edition, Springer, New York, 1981. 

MR 83k:10002 
5. R. K. Guy, Unsolved Problems in Number Theory, Second Edition, Springer, New York, 1994. 

MR 96e:11002 
6. D. R. Heath-Brown, W. M. Lioen and H. J. J. te Riele, On solving the Diophantine equation 

X3 + y3 + z3 = k on a vector processor, Math. Comp. 61 (1993), 235-244. MR 94f:11132 
7. W. C. Jagy, Progress report, private communication, January 1995. 
8. K. Koyama, Tables of solutions of the Diophantine equation x3 + y3 + z3 = n, Math. Comp. 

62 (1994), 941-942. 
9. K. Koyama, On the solutions of the Diophantine equation x3 + y3 + z3 = n, Trans. of Inst. 

of Electronics, Information and Communication Engineers (IEICE in Japan), Vol.E78-A, No. 
3 (1995), 444-449. 

10. R. F. Lukes, A very fast electronic number sieve, Ph. D. Thesis, Univ. of Manitoba (1995). 
11. J. C. P. Miller and M. F. C. Woollett, Solutions of the Diophantine equation x3 +y3 +z3 = k, 

J. London Math. Soc. 30 (1955), 101-110. MR 16:797e 
12. L. J. Mordell, Diophantine Equations, Academic Press, New York, 1969. MR 40:2600 
13. H. J. J. te Riele and J. van de Lune, Computational number theory at CWI in 1979-1994, 

CWI Quarterly, Vol.7, No.4 (1994). MR 96g:11147 
14. H. Sekigawa and K. Koyama, Existence condition of solutions of congruence xn + yn 

m (mod pe), in preparation. 
15. W. Scarowsky and A. Boyarsky, A note on the Diophantine equation xn + yn + zn = 3, Math. 

Comp. 42 (1984), 235-237. MR 85c:11029 

NTT COMMUNICATION SCIENCE LABORATORIES, 2-2 HIKARIDAI, SEIKA-CHO, SORAKU-GUN, Ky- 
OTO 619-02 JAPAN 

E-mail address: koyarnaQcslab .kecl .ntt .jp 

E-mail address: tsuruokaQcslab.kecl.ntt .jp 

E-mail address: sekigawaQcslab.kecl .ntt .jp 


